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Abstract-The possible modes of time-dependent natural convection in a horizontal annulus of finite 
length are considered. The annulus is filled with porous material and the annular thickness is assumed 
small in comparison with the mean radius. All boundaries are impermeable and adiabatic; heating is 
through a circumferentially distributed volumetric heat source. The governing equations reduce to a set 
of two non-linear ordinary differential equations. Steady non-linear oscillations exist for the special case 
of infinite Rayleigh number and symmetric heating about the vertical. For lower Rayleigh numbers, 
damped oscillations are obtained, the degree of damping increasing with the inclination of the line of 
symmetry and with decreasing Rayleigh number. Multiple stable steady states are obtained for small 

inclinations. Chaotic motions do not develop for non-inertial Darcy flows. 

INTRODUCTION 

NATURAL convection in annular porous materials is 
important in many applications. In particular, when 
porous materials are used for thermal insulation on 
pipes, the heat losses are directly related to any 
convective flows that may develop within the insul- 
ation. Furthermore, such convective flows strongly 
depend on heating conditions and system geometry, 
and may be time dependent. This paper examines the 
possible modes of time-dependent convection that 
can develop in a thin-walled porous annulus. 

Recent reviews of natural convection in porous 
materials are available [1,2]. Several studies have 
considered horizontal annular regions, under steady- 
state conditions, with the two cylindrical surfaces kept 
at different temperatures. The effects of cylinder 
eccentricity [3,4], inclination of the axis of the annulus 
[S], thermal radiation [6], and internal heat gener- 
ation [7] have been examined, along with other effects 
[8,9]. Most of these studies have used numerical 
methods to solve the governing partial differential 
equations. A considerable amount of information on 
steady-state heat transfer has been accumulated for a 
range of Rayleigh numbers and radius ratios. 

Some work has also been done on time-dependent 
convection and stability when the cylindrical surfaces 
of an annulus are kept at different temperatures. 
Caltagirone [lo] examined stability by the Galerkin 
method and found a Rayleigh number-dependent 
convection pattern. On increasing the Rayleigh 
number an initial conduction regime gave way to 
two-dimensional convection. With further increases 
of the Rayleigh number, three-dimensional flows and 
associated fluctuations appeared. The two-dimen- 
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sional numerical study by Facas and Farouk [l l] 
showed the convergence of transient convection to a 
steady-state pattern with no significant intermediate 
oscillatory states. 

In a recent extension of earlier work [7], Robillard 
et al. [12,13], examined a horizontal porous annulus 
with a constant temperature inner surface and with 
a circumferentially-varying, sinusoidal temperature 
on the outer surface. Flow symmetry was not assumed. 
For low Rayleigh numbers a perturbation analysis 
about the conduction solution was used; at higher 
Rayleigh numbers numerical methods were employed. 
At Rayleigh numbers above a critical, oscillatory 
flows were calculated. When a time-averaging process 
was applied to these flows, they displayed characterist- 
ics similar to previous steady-state flows. For much 
higher Rayleigh numbers, no periodicity in the time- 
dependent flow was detected and the system exhibited 
qualitative ‘chaotic’ behavior. 

Comparison of refs. [ 10,l l] with ref. [ 121 suggests 
that the two-dimensional oscillatory flows for 
relatively low Rayleigh numbers in ref. [12] might 
be a consequence of the assumed circumferential 
variation of temperature on the outer surface of the 
annulus. On the other hand, flow symmetry was not 
assumed in ref. [ 123 but was assumed in refs. [ 10,111. 
Due to the complexity of the governing partial differ- 
ential equations a full reconciliation of the foregoing 
differences may not be possible without extensive 
numerical calculations. Nevertheless, it is possible 
under certain conditions to study the onset of oscilla- 
tions and possible chaotic behavior in a simpler 
manner. To do this, it is necessary to simplify the 
governing equations to a set of ordinary differential 
equations. This has been done for other natural 
convection systems (e.g. ref. [14]). Such a simplified 
analysis would indicate the possible modes of steady- 
state and time-dependent behavior. 
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NOMENCLATURE 

a, b non-dimensional heat source con- Ymin, y,,, minimum and maximum values of Y 
stants defined in equations (l&f and during a periodic oscillation. 
Wd) 

c ratio of heat capacity of porous matrix Greek symbols 
to that of fluid a thermal diffusivity 

C integration constant in equation (17) B coefficient of volumetric expansion 
g acceleration due to gravity Y discriminant defined in equation (22) 
K permeability of porous medium 6 magnitude of inertia term in equa- 
L length of annulus tion (28) 

Pp 
pressure P dynamic viscosity of fluid 
period of oscillation V Liapunov function in equation (26) 

P-, P+ critical points P fluid density 

:I 

volumetric heat source u eigenvalue 
characteristic magnitude of heat 7 non-dimensional time defined in 
source defined after equation (11) equation (1Oe). 

r, 8, z ~ylind~~a1 coordinates defined in 
Fig. 1 Subscripts 

R mean radius of annulus n, m indices of Fourier coefficients 
Ra Darcy-Rayleigh number defined in 0 index of first term in Fourier expan- 

equation (log) sion. 
t time 
T temperature Superscripts 
AT characteristic temperature difference c cosine coefficient in Fourier expan- 

defined in equation (IOf) sion 
u, 0, w velocity components in cylindrical S sine coefficient in Fourier expansion 

coordinates perturbation from critical point 
v, w Fourier coefficients defined in equa- * reference value. 

tions (37) and (38) 

x> Y non-dimensional Fourier coefficients Symbols 
defined in equations (10a) and (lob) - critical point or steady-state value 

0 average over a period. 

9 

- 

The only constraint is that the heat source distribution 
must integrate to zero around the circumference of 

/I... the annulus in order to allow steady-state solutions. 
;i ,::> The present study simplifies the governing equa- 

Z tions and examines the temporal and steady-state 

‘. _’ )R 
behavior of the solutions. The objective is to classify 
the non-Iinear modes of time-de~ndent motion in a 
thin porous annulus. The following sections outline 

I+-----LB the governing equations under the thin annulus 

FIG. 1. Geometry of porous annular material of mean radius 
R and length L. 

The present study introduces a thin annulus 
approximation to make the time-dependent problem 
analytically tractable. By contrast, most prior studies 
have assumed an annulus radius ratio of about two. 
Non-uniform heating is simulated through a given 
volumetric heat source which is a function of the @ 
coordinate in Fig. 1. This heat source distribution is 
quite general, and can be thought of as arising from 
external heat addition or removal at the inner or 
outer circumferential boundaries of the thin annulus. 

approximation, and the solution. Results are pre- 
sented for high and intermediate Rayleigh numbers, 
and for symmetric and asymmetric heating. The paper 
closes with a discussion of inertial effects. 

THIN ANNULUS GOVERNING EQUATIONS 

We can begin our analysis by considering the finite- 
length thr~-dimensional annulus shown in Fig. 1. 
The radial, circumferential and axial coordinates are 
r, S, and z; the corresponding velocity components 
are u, v, and w. The annulus is thin in comparison 
with its mean radius and consists of a fluid-saturated 
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porous medium. All boundary surfaces are adiabatic 
and impermeable. Heating is through a prescribed 
rate of volumetric heat addition. As the thickness of 
the annulus gets smaller, so will the radial fluid 
velocity in the porous medium because of the imper- 
meability of the boundaries. On neglecting the radial 
velocity it can be shown that there is no axial flow in 
the annulus. In the interests of brevity the details of 
this proof are relegated to the appendix. Thus, under 
the thin annulus approximation, there is a consider- 
able simplification of the governing equations and the 
problem reduces to a circumferential flow in the 
annulus. 

With the convective motion confined to the circumf- 
erential direction, the temperature is a function only 
of 0. An obvious victim of this approximation will be 
any recirculation zones within the radial thickness of 
the porous material. Only if higher order expansions 
are made in terms of the thickness of the annulus can 
such cellular activity be detected. The mode of heating 
is also an important factor, since, for certain condi- 
tions in a thin annulus, only the trivial radial conduc- 
tive solution will be obtained. The internal volumetric 
heat source distribution used here will avoid this 
difficulty. 

It is important to point out that the present 
approach differs in detail though not in basic analyti- 
cal technique from solutions obtained from series 
expansions in terms of the Rayleigh number [3, 4, 
121. The advantage here is that the results are valid 
for large Rayleigh numbers and are thus susceptible 
to diverse time-dependent behaviors. 

The derivation of the governing equations parallels 
the procedure for toroidal thermosyphons [lS]. The 
thin annulus porous medium equations are given in 
the appendix and only the planar versions will be used 
here. If u is the circumferential velocity component, by 
mass conservation (29a) it must be a function of time 
alone. The Darcy-Oberbeck-Boussinesq equations, 
equations (29b) and (29d), are 

K 
u=- 

P [ 
-PI{1 - /?(T- T*)}gcose - ;$j 1 (1) 

c~+~g=4”‘(8)+-g (2) 
where K is the permeability of the porous medium, 
p the dynamic viscosity, p the density, /i’ the coefficient 
of thermal expansion of the fluid, p the pressure, T 
the temperature, R the mean radius of the annulus, c 
the ratio of the heat capacity of the porous matrix to 
that of the fluid, q”’ the volumetric rate of heat 
generation divided by the heat capacity of the fluid, 
and a the effective thermal diffusivity. The starred 
variables are at reference conditions. It should be 
pointed out that the non-inertial form of Darcy’s law 
has been used, which is suitable for fine grained 
materials as indicated in ref. [lo]. This form has been 
used often in analyses of time-dependent natural 

convection in porous media [l, 12, 163. 
Integrating equation (1) from 0 = 0 to 21r, the 

pressure term is eliminated 

T(0, t) cos 0 d0. (3) 

We expand T and q”’ in terms of Fourier series in 
the following form 

T= f [T:(t)sin(nB) + 7yt)COS(ne)l (4) 
“=I 

q”’ = f [q: sin (no) + q; 00s fne)]. 
“=I 

(5) 

Substituting in equation (3) we obtain 

” - Kf l gp y 
2/l ” 

The energy equation, equation (2), gives for the sine 
and cosine modes, respectively 

Equation (6) can be substituted in equations (7) 
and (8) to obtain an infinite set of autonomous 
ordinary differential equations. Of these the first 
two with n = 1 decouple from the rest. The non- 
dimensional form of the first two equations is 

dx -=Y2-b-& 
dr 

dY Y 
ds=a-xY-Ka 

where 

x = T”,/AT (loa) 

y = T’,IAT (lob) 

a = @i/Q (104 

b = -G/Q ww 

7 = Kp+g/lATt/2cpR uw 

AT= &PQIKp*dO uw 

Ra = Kp*gjlATR/2pa. Wf3) 

The dependent variables x and y represent the non- 
dimensional sine and cosine amplitudes of the first 
Fourier mode. In addition, since the azimuthal vel- 
ocity component, u is proportional to the amplitude 
of the first cosine mode (see equation (6)), y is related 
to u and dimensional parameters by 

y = 2pv/Kp*gpAT. (11) 

Only the first Fourier coefficients of the heat source 
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distribution are of importance in the determination 
of the velocity. A characteristic heat input is defined 
by Q = ,/((&)* + (qcl)*). Thus, a and b are of order 
unity and satisfy the relation a* + bZ = 1, so that only 
one of them need be specified. The relative magnitudes 
of a and b depend on the inclination of the line of 
symmetry of the heating, with a = 0 corresponding 
to heating which is symmetrical about a vertical line. 
The tangent of the angle of inclination of the line of 
symmetry is a/b. 

In equation (log) Ra is the Darcy-Rayleigh number. 
Note that the governing equations, equations (9a) and 
(9b), have been nondimensionalized such that the 
geometrical effect of the volumetric heating is through 
the parameters a and b. These parameters do not 
vanish even if the heating tends to zero. The Rayleigh 
number employs the mean radius of the annulus as 
the length scale. Thus, in the limit of an infinite 
Rayleigh number, conduction becomes negligible with 
respect to convection, and Ra disappears from equa- 
tions (9a) and (9b). However, the volumetric heating 
parameters a and b remain and control the structure 
of the convective motion. Thus, the infinite Rayleigh 
number limit can provide important information on 
the preferred structure of time-dependent convective 
flows in the annulus. In the present study, the flow 
characteristics at Ra = 100 or higher are very similar 
to those at an infinite Ra. Thus, to illustrate the 
structure of the flows, we will consider Ra values of 
infinity and 10. 

The problem has been reduced to the solution of 
two ordinary differential equations, equations (9a) 
and (9b), under the thin annulus approximation. 
These equations will be studied using a variety of 
techniques including linear stability analysis, exact 
integration under special conditions, Liapunov 
method, and numerical analysis. Whenever numerical 
solutions are reported they are obtained with a fourth 
order Runge-Kutta scheme with a time step of 0.01. 

INFINITE RAYLEIGH NUMBER LIMIT 

In the limit of an infinitely high Rayleigh number 
the governing equations, equations (9a) and (9b), 
simplify to 

dx 
dz=y2-b 

dy 
z = a - xy. 

(124 

(12b) 

The steady-state solutions are the critical points of 
the set of equations. These are denoted by P+ and 
P-, with values 

P+:(x,y) = (a/,,‘b,Jb) 

P - : (2, j) = - (u/,/b, ,,/‘b) 

(134 

(W 

and exist only for b > 0. This represents heating from 

below and cooling from above and will be assumed 
in all that follows. 

A linear stability analysis around the critical points 
of the non-linear solution gives the eigenvalues 

(T = ;[-2 f &’ - Sj*)] (14) 

with x and y proportional to exp(ar). The eigenvalues 
for P+ and P- are thus 

n=$-$~/(~-8b)] (15a) 

and 

o=f[$fJ(;-8b)] (W 

respectively. Instability results from a positive real 
part of the eigenvalue. Thus P+ (Pm) is unstable if 
a < 0 (a z=- 0) and stable otherwise. The special case 
of symmetrical heating about a vertical line is the 
present analog to the problem studied by Robillard 
et al. [123 and is considered next. 

Symmetrical heating, a = 0 
From the paragraph following equation (1 l), when 

a = 0, it follows that b = 1. By equations (15a) and 
(15b), neutral stability is implied for a = 0, with linear 
oscillations around the critical points 

P*:(x,y) = (0, * 1) 

of radian frequency 42. 
This special non-linear problem has an exact sol- 

ution in phase space, given by 

x2 + y2 - lny* = C. (17) 

Constant C is determined from initial conditions 
and is always larger than unity. The value C = 1 
corresponds to critical point initial conditions. The 
solution is invariant under a y + -y transformation 
and is thus symmetrical about the x-axis. 

Some solutions of equation (17), in the form of 
closed orbits in the x, y phase plane, are shown in 
Fig. 2(a) for C = 2, 5 and 10. These correspond to 
initial values of (1, l), (2,l) and (3,l) in the upper half 
of the plane and to (1, - l), (2, - 1) and (3, - 1) in the 
lower half. The time dependence of x is the same for 
both positive and negative initial conditions and is 
shown in Fig. 2(b) from numerical calculations. The 
corresponding y variation is shown in Fig. 2(c) for 
positive initial conditions. For negative initial con- 
ditions, the y variation is found by replacing the y 
ordinate in Fig. 2(c) with -y. The larger amplitude 
oscillations tend to form peaks indicating high fre- 
quency content. The period P is generally a function 
of amplitude for non-linear oscillations. This is shown 
in Fig. 3 where P is found to increase as the amplitude 
gets larger. Very small oscillations about the critical 
point exist as C + 1, for which the period is found to 
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FIG. 2. (a) Closed trajectories in x-y phase plane for infinite 
Rayleigh number symmetrical heating, C= 2, 5, and 10; 
(b) X(T) transients; (C)J(T) transients for positive initial values 
(transients for negative initial values are mirror symmetric). 
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FIG. 3. Period of oscillation, P, for infinite Rayleigh number 
symmetric heating and different values of C. A value of 

C = 1 corresponds to critical point initial conditions. 

be 71,/2 as predicted by eigenvalues (15a) and (15b) 
of the linear theory. 

These oscillations have a superficial resemblance 
to the numerical results of ref. [12], although there 
are significant differences in detail. For example, in 
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FIG. 4. Maximum (y,,,) and minimum (y,J values of y(r) 
during an oscillation for infinite Rayleigh number symmetric 

heating. Broken lines are approximations. 

the present case all orbits are entirely in the upper or 
lower halves of the phase plane. In other words the 
fluid velocity does not reverse while going through a 
series of oscillations. This differs from ref. [ 123, where 
even the steady-state oscillations had zero mean 
circumferential velocity. 

The maximum and minimum of the absolute values 
of Y during the oscillations are given by the solutions 
to the transcendental equation 

Y2 - lnY* = C. (18) 

These values are denoted by Y,,,.. and Y,,,~, and are 
shown in Fig. 4. For large C, they can be approximated 

by 

Y,,, = JC (19a) 

Ymin = exp ( - C) (lob) 

as shown by broken lines in the figure. As C increases, 
the lowest velocity during each oscillation (as indi- 
cated by Ymi,,) decreases so that the flow almost comes 
to a complete stop before accelerating again. 

The information presented in ref. [12] also suggests 
that for that problem the time-averaged characteristics 
were similar to those for the steady-state solution. In 
the present case we can easily show from the governing 
equations that 

(x) = 0 (2Oa) 

(Y2> = 1 (2Ob) 

(XY> = 0 (2W 

where averages over a period are represented by ( ). 
On comparing equation (20b) with equations (13a) 
and (13b) we find that the r.m.s. velocity for periodic 
oscillations is exactly equal to what would occur 
under steady state. 

Asymmetrical heating, a # 0 
On either side of a = 0, one or the other of the 

critical points becomes asymptotically stable (from 
equations (Isa) and (15b)). From numerical inte- 
grations, almost the entire x-y plane seems to be the 
basin of attraction of these critical points, ruling out 
finite amplitude oscillations. For very small a, slowly 
damped oscillations around the stable critical point 
can be observed which for large a are highly damped. 
This behavior is shown in Fig. 5 for an initial condition 
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FIG. 5. (a) Trajectory in x-y phase plane for infinite Rayleigh number asymmetric heating with n = 0.1 
and initial condition (0, -0.5). The solution migrates from an unstable initial state to a stable steady- 

state. (b) y (5) transient. 

(0, -0.5) and for a = 0.1, which represents an incli- 
nation of 5.7” in the line of symmetry of the heating 
with respect to the vertical. Figure 5(a) presents the 
x-y phase plane in which the solution curve is seen 
to first spiral out from the unstable critical point P- 
and then spiral in towards the stable critical point 
P+. According to the eigenvalues, equations (15a) and 
(15b), the rates of divergence and convergence are 
equal. The change in direction of the velocity is also 
observed in Fig. S(b) which shows the time variation 
of y. 

FINITE RAYLEIGH NUMBER CONVECTION Symmetrical heating, a = 0 

For finite Rayleigh numbers, the complete equa- 
tions, equations (9a) and (9b), must be considered. 
However, the results should asymptotically match 
those for infinite Ra of the preceding section. The 
critical points for finite Ra are given by solutions of 
the cubic equation 

Once again we consider, the special case of a = 0 
and b = 1 for which the roots of equation (21a) can 
be directly determined by factorization. The solutions 
are 

1 
x=-Ra’ 

ji= (24a) 

1 
x== -G’ p= -J(I --&) (24b) 

y3+ -&b y-&=0 
( > 

(21a) 

_a 1 

“=Y-G. 
@lb) 

Equation (21a) has either one real root or three 
depending on the value of the discriminant 

,=(-&--b)l/27+a’/4Ra2. (22) 

The hatched and unhatched areas in Fig. 6 correspond 
to parameter values which give three solutions and 
one solution, respectively. 

A linear stability analysis can be carried out in a 
similar fashion to the preceding section to obtain the 
eigenvalues 

.=~[-(i+~)‘J(il-8~z)]. (23) 

As compared to equation (14), the finite Rayleigh 
number analysis is seen to lead to a term which 
stabilizes small deviations from the critical point. 

(b) 

I 
20 

l/ Ro2 

FIG. 6. Parameter values for finite Rayleigh number convec- 
tion which lead to three real solutions (hatched region) and 
to one real solution (unhatched region). Symmetric heating 

corresponds to a = 0, and asymmetric heating to a # 0. 

i= -Ra, j = 0. (24~) 

These are shown in Figs. 7(a) and (b), and are denoted 
by I, II and III, respectively. It is seen that solutions 
I and II are only valid for Ra 2 1 while the trivial 
solution III is valid for all Ra. Substituting these in 
the eigenvalue expression, equation (23), the linear 
stability theory indicates that I and II are always 
stable while III is only stable for Ra < 1. 

For small enough Ra there is only the conducting 
solution with zero velocity. That this is asymptotically 
stable for all perturbations can be shown in the 
following manner. The governing equations can be 
written in local form as 

z = (Y')~ - x’/Ra 

d y’ - = Ray’ - x’y’ - y’/Ra 
d7 (25b) 
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FIG. 7. Steady-state solutions for finite Rayleigh number 
convection with symmetric heating. (a) f and (b) j vs Ra. The 
three solution branches are denoted by I, II, and III. Dotted 

lines represent unstable solutions. 

where the primes denote perturbations from the 
steady solution. We consider the positive definite 
function 

v = (x32 + (y’)2. 

From this we have 

(26) 

dv avdx avdy 
dt=axds+ay;iT 

= -2(~‘)~/Ra - 2Ra (27) 

which is negative definite for Ra < 1, so that under 
this condition v is a Liapunov function. This means 
that solutions starting from any initial condition tend 
to the conducting one. 

On increasing Ra from zero, the initially stable 
conduction solution gives way to two convective 
solutions at Ra = 1. By comparison with the infinite 
Ra approximation, the extra steady-state solution III 
for finite Ra is unstable and is thus not important. 
Furthermore, on the asymptotically stable branches I 
and II, the convergence is of the order of exp ( - l/Ra). 
Thus, initial conditions away from the critical point 
will lead to damped oscillations which could be 
mistaken for periodic motion in numerical calcu- 
lations at large Ra. Figures 8(a) and (b) show an 
example of such a slowly damped motion for Ra = 10 
and for positive and negative initial values of y. Once 
again the velocity does not change direction during 
the oscillations. The constant amplitude oscillations 
of Fig. 2 can be compared to these. 

Asymmetric heating, a # 0 
This is the most general case of equations (9a) and 

(9b). Figures 9(a) and (b) show the evolution from the 
initial condition (0, -0.5) for Ra = 10, a = 0.1. In the 
phase plane graph the solution is seen to spiral away 
very slowly from the unstable critical point before it 

changes direction and spirals in fairly rapidly to the 
stable critical point. Figure 9 can be compared to Fig. 
5 where Ra was considered infinite. Though the 
qualitative trends are the same, the speed of divergence 
from and convergence to critical points is not. 

Two stable steady-state velocities are sometimes 
possible. This is illustrated in Figs. lo(a) and (b) for 
u = 0.1, which show X and jj for different values of 
Ra. The three solution branches are indicated by I, 
II and III with the unstable parts shown as dotted. 
Branch I exists for all Ra and is always stable. Branch 
II exists above a certain critical value Ramin but is 
entirely unstable. Branch III also exists above this 
critical value and is stable only in an interval 
Ramin < Ra < Ramax between the crosses. Figure 11 
shows Ramin and Ramax for different values of a. As 

a -+ 0, Ramax becomes infinite. It can also be seen that 
multiple stable steady states are possible only for 
a < 0.335, which corresponds to an inclination of the 
symmetry line of the heating of less than 20” from the 
vertical. 

Whenever two stable steady states are possible, the 
long time tendency of the time-dependent solution 
towards either of these will depend on the initial 
condition. We consider as an example Ra = 2 and 
a = 0.1, for which the two critical points 
(- 0.62, -0.83) and (- 0.39,0.89) are linearly stable. 
In Fig. 12 all initial conditions marked with a filled 
circle lead to the first critical point indicated with a 
larger filled circle. This defines the finite basin of 
attraction of this critical point attractor. Initial con- 
ditions corresponding to the crosses tend to the 
second critical point, marked with a bold cross, 
and this basin of attraction is found to be infinite. 
According to the eigenvalues of the linear stability 
theory, equation (23), the convergence is 60% faster 
for the second critical point than for the first. Further- 
more it is not evidently the initial velocity alone that 
determines the final steady-state condition. The two 
basins of attraction are separated by an unstable limit 
cycle and it is not easy to determine what an initial 
condition on this limit cycle would do. 

In terms of the foregoing terminology, for the 
symmetric heating case a = 0, both basins of attrac- 
tion are infinite, being the upper half of the phase 
plane for the upper critical point and the lower half 
for the lower critical point. In such a case the initial 
velocity alone determines the final steady state to 
which the system would converge. 

INERTIAL EFFECTS AND POSSIBLE CHAOTIC 
SOLUTIONS 

The non-linear ordinary differential equations, 
equations (9a) and (9b), which govern this problem 
have solutions which can be represented as trajectories 
in a two-dimensional phase plane. The kind of attrac- 
tors possible for bounded long time solutions under 
such circumstances are only steady states and closed 
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FIG. 8. (a)Trajectories in x-y phase plane for finite Rayleigh number symmetric heating, Ra = 10. Initial 
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FIG. 9. (a) Trajectory in x-y phase plane for finite Rayleigh number asymmetric heating, Ra = 10 and 
a = 0.1. The solution migrates from an unstable initial state to a stable steady state. (b)y(r) transient. 

Cb) 

FIG. 10. Steady-state solutions for finite Rayleigh number 
convection with asymmetric heating, a = 0.1. (a)x and (b)j 
vs Ra. The solution branches are denoted by I, II, and III. 

Dotted lines represent unstable solutions. 

orbits. Strange attractors with chaotic solutions are 
not possible as would be the case for dynamical 
systems in three-dimensional phase spaces, which is 
what occurs in natural convection in closed tubes 
with toroidal geometry [14,15]. The reason that the 
present problem has a two-dimensional and not a 
three-dimensional representation in phase space is 
that no time derivatives of the velocity appear in 

Given the importance of the foregoing point in 
relation to possible chaos in the system, it is relevant 

to ask what effect the inclusion of a time derivative 
in Darcy’s law would have, even if it were very small 
in magnitude. The governing equations would then 
be of the form 

dx 
-=zy-b 
dt 

dy 
iG=a-rx 

sg=y-z 
(28) 

Darcy’s law. Consideration of fluid inertia leads to where for simplicity we consider the non-conducting 

-a 
04 

FIG. 11. Maximum (Ram.3 and minimum (Ra,i,,) values of 
the Rayleigh number for the conditionally stable solution 

branch III in Fig. 10. 

the inclusion of other terms [7, lo] also, but as they 
do not increase the dimension of the phase space they 
will be ignored in the present discussion. 
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tain conditions two stable steady states are possible, 
and either can be reached depending on the initial 
conditions. It can also be demonstrated that chaotic ....... 

:::::l.......::::: 
:::::::::::::::::;::::::::f:::;;;;;;;;; 
.............................. 
:::.::::::::::::::::::::::::::::::::::: 

behavior is not possible under the thin annulus 
.................... ...+*...*.....*.+*. ....................................... 
:::::::::::.........~....., ......................................... 

approximation unless fluid inertia effects are included. 

:::::::::::::I::::::::::::;:::::::::::: Two other observations can be made with respect _ .... ..-_. ._~~...-~...-....__~_.~-.-.~~~.~~..__- - ....................... ...! ............. ................. ..* ................... .+..*.....................* ............ to possible numerical solutions of the governing 
..‘.......................~........* ... 
................................................ ...................... ..*., ................... . .... ..P partial differential equations under these and similar ............ *... .................... ..l...........* 
:::: ................................... ...................... i: ............ 

circumstances. Any results implying steady oscil- 
. . . . ................................... . . . . ..*.+................* ............ . * . - :: :: ............. ..* ............ . . . ............. ..* ............ lations should be carefully verified in order to dis- 
. . . . . I :: :: “.............R ............ 

t . :: I . 
:::;:::;::::t:::;::::::::::::~ tinguish between strictly periodic phenomena and 

.+.. ............*..f ............ 
* . . . :: ............................ 

-3 -2 -I 0 I 2 
slowly damped oscillations. Also, in time-dependent 

I calculations, different initial conditions can lead to 
different steady states. 

T 

FIG. 12. Basins of attraction of the two stable critical points 
for Ra = 2 and a = 0.1 are indicated by filled circles and 
crosses in the x-y phase plane. The corresponding critical 

points are shown with bold symbols. 

case. Inertial effects are included through 6 and it is 
easy to see that for 6 = 0, the non-inertial equations, 
equations (12a) and (12b), are recovered. The critical 
points of equations (12a), (12b) and (28) are identical 
and are given by equations (13a) and (13b). The 
critical point P+ is stable for a > ~56~” and P- for 
a < -8~~“. There is a narrow range of values of a 
near zero of width proportional to 6, where both 
critical points are unstable. In this region either closed 
orbits or much more complicated chaotic behaviors 
are possible. A description of the different possibilities 
is given in ref. [ 151 for 6 = 1. However, 6 is very small 
here and the range of values of a for which chaotic 
solutions could occur is also very small and of little 
practical importance in the present context. Moreover, 
it must be remembered that the non-inertial form of 
Darcy’s law was used in ref. [ 123 and thus the chaotic 
motion found there must be due to some other 
reason, either the boundary conditions used or two 
dimensionality. This merits further study. 

CONCLUSIONS 

The governing equations for time-dependent natu- 
ral convection arising from an arbitrary heat source 
distribution in a thin annulus have been reduced to 
the solution of two non-linear ordinary differential 
equations. The approximation does not involve any 
restriction on the Rayleigh number though effects due 
to possible recirculation zones within the annular 
thickness have been suppressed. For infinite Rayleigh 
numbers and symmetrical heating an exact solution 
exists. This solution, combined with a linear stability 
analysis, provides information on the general behavior 
of the system. For asymmetric heating or finite 
Rayleigh numbers, damped velocity oscillations can 
be observed leading to a steady-state motion. The 
damping factors can be qualitatively predicted from 
the eigenvalues of linear stability theory. Under cer- 
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a*T, 
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APPENDIX 

Here we show that the present study is applicable not 
only for a planar geometry but also for a three-dimensional 
annulus with a horizontal axis, as shown in Fig. 1. This is 
due to the fact that under the thin annulus approximation, 
the assumption of impermeable and adiabatic boundaries 
leads to zero flow and heat conduction in the axial direction. 

For a thin annulus with negligible radial velocity, we have 
the following governing equations for flow in porous media. 
Mass conservation gives 

aTE, !!%T’+w az+wcs ‘dt+R ’ O az ” az 

Equations (31a)-(31c) can be integrated in the z-direction to 
give 

wg = 0 (35) 

f!+g=O (294 dz = 0 (36) 

where w is the axial component of the fluid velocity. The 
Darcy-Oberbeck-Boussinesq equations in the circum- 
ferential and axial coordinate directions are respectively 

where impermeability at z = 0 and L has been used. Equation 
(36) indicates that Fourier series expansions of vi and vi in 
z may also be used. These can be written as 

u = -$p’(l - B(T- T*)JgcosO +k$] (29b) {2} = ${z}sin(Znmz/L) 

+ {g} COS (2nnu,Q]. (37) k ap w = -lz’ 
The Fourier components of the axial velocity can be 
expanded as The energy equation is [I] 

{z} = ~{~‘“}sin(2nrnz/~). (38) 

Expansions (37) and (38) can be substituted in equations 
(31b) and (31~) to obtain 

yes = y’s = 0 nn nm (39) 

The four dependent variables II, w, T and p are Zn-periodic 
in 0 so that they can be expanded in Fourier series of the 
form 

I$ = & + C [& sin (no) + 4’. cos (no)] (30) 
n 

where 4 represents each one of the variables. The new 
dependent variables & and +‘, are functions of z and t alone. 
The summations are from n = 1 to infinity, as will be all the 
other summations. The heat source can also be expanded as 
in equation (5). 

Three component equations can be obtained for each one 
of equations (30), one for the integral itself, and then two 
for the integral of sin(m0) and cos(m0) times the equation. 

In addition equations (31b), (31c), (32b), (32c), (33b) and (33~) 
can be used to obtain 

w’ 
I 

R2azw: - 0 

2 a2 ’ 
wc - $2 = 0. 

” 
(41a,b) 

Substituting equation (38) in equations (41a) and (41b) and ,.^~ 
These equations are using equation (4U), we get 



Natural convection in a thin horizontal porous annulus 739 

‘j$& + @$){~}sin(2nnz/L) = 0 
Thus, under the thin annulus approximation, the velocity 

(42) component in the z-direction is zero. 
“In 

from which 

This gives 

It can be shown in a similar manner from the energy 
equations (34a)-(34c) that, as a consequence of the adiabatic 

(43) condition we have assumed at z = 0 and L, the temperature 
is independent ofz. Thus, only the circumferential component 
of the velocity field exists and the temperature varies only 

(44) with 9. 

CONVECTION NATURELLE DANS UN ANNEAU POREUX HORIZONTAL 

R&urn&On considtre les modes possibles de coinvection naturelle, dependant du temps, dans un espace 

annulaire de longueur finie. L’anneau est rempli de matiere poreuse et son epaisseur est supposee petite en 
comparaison du rayon moyen. Toutes les frontieres sont impermeables et adiabatiques; le chauffage est 
fourni par une source volumetrique de chaleur distribuie circonferentiellement. Les equations se reduisent 

a un systcme de deux equations differentielles non lintaires. Des oscillations stables non lineaires existent 
pour le cas special d’un nombre de Rayleigh intini et un chauffage symttrique par rapport a la verticale. 
Pour des nombres de Rayleigh plus faibles, on obtient des oscillations amorties dont le degre d’amor- 
tissement augmente avec I’inclinaison de la ligne de symttrie et quand le nombre de Rayleigh diminue. Des 
etats stables permanents sont obtenus pour des petites inclinaisons. Des mouvements chaotiques ne se 

developpent pas dans les Ccoulements de Darcy non inertiels. 

NATtiRLICHE KONVEKTION IN EINEM DtiNNEN, WAAGERECHTEN 
PORBSEN RINGSPALT 

Zusammenfassung-Die moglichen Zustlnde der zeitabhangigen natiirlichen Konvektion in einem hori- 
zontalen Ringspalt endlicher Lange werden betrachtet. Der Ringspalt ist mit porosem Material gefiillt, 
und die Ringspaltbreite wird als klein im Vergleich zum mittleren Radius angenommen. Alle Grenzflachen 
sind dicht und adiabat ; die Beheizung erfolgt durch eine iiber den Umfang verteilte volumetrische Warme- 
quelle. Die Bilanzgleichungen reduzieren sich auf zwei nichtlineare gewohnliche Differentialgleichungen. 
Im Spezialfall bei unendlicher Rayleigh-Zahl und symmetrischer Beheizung iiber die Vertikale treten stetige 
nichtlineare Schwingungen auf. Bei niedrigen Rayleigh-Zahlen treten gediimpfte Schwingungen auf, wobei 
der Grad der Dampfung mit der Neigung der Symmetrieachse und mit abnehmender Rayleigh-Zahl 
ansteigt. Bei kleineren Neigungen ergeben sich mehrere stabile Zustande. Bei nicht tragheitsbedingten 

Darcy-Stromungen entwickeln sich keine chaotischen Bewegungen. 

ECTECTBEHHAg KOHBEKHHR B TOHKOM TOPM30HTAJIbHOM IIOPHCTOM 
KOJIbHEBOM KAHAJIE 

AnHoTaluln-PaccMaTpesalorcn B03MOEHbIe ~WiMbl eCTeCTBeHHOi? KOHBeKUWli B TOPR30HTanbHOM 

KonbueBoM Kaaane KoHeqHoii nnuHbI. KOJIbIIeBOfi KaHan 3anonHeH nopHcTbIM MaTepHanoM, ero 
TonmliHa cqHTaeTca Manoii no cpaeseaew, co cpenHHM paneycoM. Bee rpaHHubI HenpomiUaeMble H 

anHa6aTHrecKHe; HarpeB OCyIUeCTBJTaeTCa 06aeMHbtMn BCTOYHWKaMH TelTJIa, paCllOnO)l(eHHbIMW II0 

OKPy~HOCT1(.O~Pe~eJDI‘OUIHe ypaBHeHHK CBeneHbl KCACTeMenByX HenHHetiHbIX 06blKHOBeHHbIX nH+j,e- 

PeHUHanbHbIX ypaBHeHk& B Cny'iae 6eCKOHevHOrO WiCJIa kWIe!4 N CHMMeTpHHHOrO HarpeBa HaBnIo- 

namrca ycToiiHHBbIe HenHUeiiHbIe KOne6aHHa. J&m 6onee HW~KWX qricen Psnea nonyqeno 3aryxanne 
KOne6aHHti,npWieM CTeneHb 3aTy3aHHa BO3paCTaeT C HaKJIOHOM nHHUA CHMMeTpHH H C yMeHb"IeHHeM 

wfcna Psnen. ,&a ManbIx yrnos HaKnoHa Ha6nmnanHCb MHoromcneHHbIe ycToi+isBbIe COCTOIIHHR. B 
CJIy’Iae 6e3bIHepUHOHHbIX Te’IeHHfi flapC!H XaOTH'teCKHe LIBH)KeHAII He pa3BHaaEOTCR. 


